Electron transfer in cyanobacterial photosystem I: II. Determination of forward electron transfer rates of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX.
نویسندگان
چکیده
The directionality of electron transfer in Photosystem I (PS I) is investigated using site-directed mutations in the phylloquinone (QK) and FX binding regions of Synnechocystis sp. PCC 6803. The kinetics of forward electron transfer from the secondary acceptor A1 (phylloquinone) were measured in mutants using time-resolved optical difference spectroscopy and transient EPR spectroscopy. In whole cells and PS I complexes of the wild-type both techniques reveal a major, slow kinetic component of tau approximately 300 ns while optical data resolve an additional minor kinetic component of tau approximately 10 ns. Whole cells and PS I complexes from the W697FPsaA and S692CPsaA mutants show a significant slowing of the slow kinetic component, whereas the W677FPsaB and S672CPsaB mutants show a less significant slowing of the fast kinetic component. Transient EPR measurements at 260 K show that the slow phase is approximately 3 times slower than at room temperature. Simulations of the early time behavior of the spin polarization pattern of P700+A1-, in which the decay rate of the pattern is assumed to be negligibly small, reproduce the observed EPR spectra at 260 K during the first 100 ns following laser excitation. Thus any spin polarization from P700+FX- in this time window is very weak. From this it is concluded that the relative amplitude of the fast phase is negligible at 260 K or its rate is much less temperature-dependent than that of the slow component. Together, the results demonstrate that the slow kinetic phase results from electron transfer from QK-A to FX and that this accounts for at least 70% of the electrons. Although the assignment of the fast kinetic phase remains uncertain, it is not strongly temperature dependent and it represents a minor fraction of the electrons being transferred. All of the results point toward asymmetry in electron transfer, and indicate that forward transfer in cyanobacterial PS I is predominantly along the PsaA branch.
منابع مشابه
Recruitment of a foreign quinone into the A1 site of photosystem I. Consecutive forward electron transfer from A0 TO A1 to FX with anthraquinone in the A1 site as studied by transient EPR.
In photosystem I (PS I), phylloquinone (PhQ) acts as a low potential electron acceptor during light-induced electron transfer (ET). The origin of the very low midpoint potential of the quinone is investigated by introducing anthraquinone (AQ) into PS I in the presence and absence of the iron-sulfur clusters. Solvent extraction and reincubation is used to obtain PS I particles containing AQ and ...
متن کاملAsymmetric electron transfer in cyanobacterial Photosystem I: charge separation and secondary electron transfer dynamics of mutations near the primary electron acceptor A0.
Point mutations were introduced near the primary electron acceptor sites assigned to A0 in both the PsaA and PsaB branches of Photosystem I in the cyanobacterium Synechocystis sp. PCC 6803. The residues Met688PsaA and Met668PsaB, which provide the axial ligands to the Mg2+ of the eC-A3 and eC-B3 chlorophylls, were changed to leucine and asparagine (chlorophyll notation follows Jordan et al., 20...
متن کاملStrains of synechocystis sp. PCC 6803 with altered PsaC. I. Mutations incorporated in the cysteine ligands of the two [4Fe-4S] clusters FA and FB of photosystem I.
Two [4Fe-4S] clusters, FA and FB, function as terminal electron carriers in Photosystem I (PS I), a thylakoid membrane-bound protein-pigment complex. To probe the function of these two clusters in photosynthetic electron transport, site-directed mutants were created in the transformable cyanobacterium Synechocystis sp. PCC 6803. Cysteine ligands in positions 14 or 51 to FB and FA, respectively,...
متن کاملInvestigation of the Stationary and Transient A1·− Radical in Trp → Phe Mutants of Photosystem I
Photosystem I (PS I) contains two symmetric branches of electron transfer cofactors. In both the A- and B-branches, the phylloquinone in the A(1) site is pi-stacked with a tryptophan residue and is H-bonded to the backbone nitrogen of a leucine residue. In this work, we use optical and electron paramagnetic resonance (EPR) spectroscopies to investigate cyanobacterial PS I complexes, where these...
متن کاملThe N-terminal domain of PsaF: precise recognition site for binding and fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii.
The PsaF-deficient mutant 3bF of Chlamydomonas reinhardtii was used to modify PsaF by nuclear transformation and site-directed mutagenesis. Four lysine residues in the N-terminal domain of PsaF, which have been postulated to form the positively charged face of a putative amphipathic alpha-helical structure were altered to K12P, K16Q, K23Q, and K30Q. The interactions between plastocyanin (pc) or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 30 شماره
صفحات -
تاریخ انتشار 2003